Skip to main content

Mountain Flying Part 2

 

Continued from: Mountain Flying Part 1

Orographic Lifting

As the wind blows moist air upslope, it will cool, and may form clouds. If, as is often the case in winter, the air is stable, the clouds will stay close to the mountain, forming a cap cloud. However, if the air is unstable, as is usually the case in summer, this initial lifting will be enough to start convection and result in thunderstorm formation.

Microbursts

Wet microbursts are typically found in the middle of an active thunderstorm or intense rain shower, and avoiding the strong downdraft is relatively easy. Dry microbursts, however, are more insidious because they occur with little or no warning in the clear air beneath virga. Dry microbursts are common in and near the Rockies and other mountainous areas of the western United States in the summer. Dry microbursts are likely when thunderstorms with bases above about 3,000- to 5,000-feet above ground level (AGL ) exist and the temperature/dew point spread on the surface is more than about 40 degrees Fahrenheit. A good indicator of a dry microburst is when you see dust blowing underneath the thunderstorm. Staying clear until the event passes (usually a few minutes) is recommended.

Density Altitude

Density altitude is pressure altitude corrected for temperature. Higher density altitude reduces overall performance of the airplane. At higher density altitudes, takeoff and landing distances are increased, thrust is decreased, rate of climb and actual service ceiling are decreased, true airspeed (TAS) is higher for a given indicated airspeed (IAS), and turning radius is larger for a given IAS (due to higher TAS). To help regain performance at high-density altitudes, consider reducing aircraft weight (retardant and/or fuel load). Check your aircraft flight manual (AFM) performance data charts for takeoff and landing distances, climb rates, etc. Since your TAS is higher for a given IAS, many pilots respond to the visual cues of higher ground speed on takeoff by rotating at a lower IAS than normal. Rotating at too slow an airspeed may cause the airplane to take an even longer ground run than necessary. Turning radius is proportional to the square of TAS. For example, if you increase your TAS by only 10%, your turn radius will increase by 20%. In the fire pattern this may result in an overshooting turn to final with the resultant last-minute corrections (rushed approach, etc.). If in doubt, go around. Higher density altitudes also affect best rate and angle of climb airspeeds. Refer to your AFM to be sure you are flying the correct airspeeds to get the performance you expect. Be extra cautious about slowing down at high-density altitudes. Throttle response will be delayed (due to less dense air) and thrust is reduced due to less air over the prop blades. Stalls at high-density altitudes and close to the ground can be devastating with insufficient time or performance response to recover.

Ridge and Pass Crossing

A good technique is to cross ridges or passes at the ridge elevation plus at least 1,000-feet AGL. If the winds at mountain top level are above 20 knots, increase to 2,000-feet AGL. Plan to be at that altitude at least three miles before reaching the ridge and stay at that altitude until at least three miles past it. This clearance zone will give you a reasonable safety zone to avoid the most severe turbulence and downdrafts in windy conditions and/or the ability to turn the aircraft around in a descending turn if necessary. If conditions or airplane performance dictate, you may need to fly along the windward side of a ridge to find updrafts for gaining altitude before crossing a ridge. You may also need to circle before reaching the ridge if climbing out of a valley airport. Move across ridges at a 45° angle. This allows you to turn away from the ridge quicker if you encounter a severe downdraft or turbulence. Once you have crossed the ridge, turn away from it at a 90° angle to get away from the most likely area of turbulence quickly. Plan your crossing to give yourself the ability to turn and descend toward lower terrain quickly if necessary.

Rough Terrain

Heads up near or above abrupt changes of terrain such as cliffs or rugged areas. Dangerous turbulence can be expected, especially with high winds.

Box Canyons

Try to avoid flying up the middle of a canyon. It is better to fly along one side or the other (preferably the downwind side) at sufficient altitude to be in a better position to execute a 180-degree turn. Allowing sufficient altitude for a descending 180-degree turn along with a turn into the wind (if possible) decreases actual turn radius across the ground. Use extra caution when mountain tops are obscured. Many accidents occur as a result of pilots turning up the wrong drainage, ending in a box canyon. Monitor GPS closely.

 

 

Category

Last Modified / Reviewed:


Have an idea or feedback?

Share it with the NWCG 6MFS Subcommittee
 


Follow NWCG on X and Facebook
 


 

NWCG Latest Announcements

Updated NWCG Standards for Wildland Fire Resource Typing, PMS 200 Now Includes Off-Highway Vehicle Typing Standards

Date: May 13, 2025
Questions?  Please contact:
Mobile Fire Equipment Subcommittee 

The NWCG Standards for Wildland Fire Resource Typing, PMS 200 has been updated to include newly developed Off-Highway Vehicle (OHV) typing standards. These standards organize OHV information into logical categories and outline key safety requirements for occupants.

NWCG Standards for Wildland Fire Resource Typing, PMS 200 establishes minimum typing standards for aircraft, crews, and equipment used in national mobilization to wildland fire incidents. Typing designations are assigned based on measurable capability and performance criteria.

References:

NWCG Standards for Wildland Fire Resource Typing, PMS 200

NEW! S-204, Interpersonal and Critical Thinking Skills for Safety Officers Now Available

Date: May 12, 2025
Questions?  Please contact:
Risk Management Committee

The S-204, Interpersonal and Critical Thinking Skills for Safety Officers self-directed online course is now available! Developed through the Incident Performance and Training Modernization (IPTM) effort, this training supports individuals working towards Safety Officer, Field (SOFF) incident qualifications.

S-204, Interpersonal and Critical Thinking Skills for Safety Officers focuses on facilitating hazard mitigation conversations and building trust to influence safety-related decisions. Individuals can self-enroll through the Wildland Fire Learning Portal (WFLP).

Any changes to qualification pathways will take effect with the next update of the NWCG Standards for Wildland Fire Position Qualifications, PMS 310-1.

References:

S-204, Interpersonal and Critical Thinking Skills for Safety Officers 

NWCG Safety Officer, Field (SOFF) Position Page

Wildland Fire Learning Portal

Great Basin Cache Upgrading to New Inventory System

Date: May 7, 2025
Questions?  Please contact:
Great Basin Cache
Phone: (208) 387-5104
Fax: (208) 387-5573

The Great Basin Cache (GBK) is transitioning to a new inventory system to better serve the wildland fire community. During this upgrade, GBK will be unable to process standard orders from Part 1: Fire Supplies and Equipment and Part 2: Publications between May 8-20, 2025, with exceptions made for emergency fire orders. Orders will be accepted through close of business May 7.

To browse the latest available items, please refer to the National Fire Equipment System (NFES) catalogs. 

References:

NWCG NFES Catalog-Part 1: Fire Supplies and Equipment, PMS 449-1

NWCG NFES Catalog-Part 2: Publications, PMS 449-2

NEW! Air Operations Summary (ICS 220 WF) Now Available

Date: May 2, 2025
Questions?  Please contact:
National Interagency Aviation Committee

The Air Operations Summary (ICS 220 WF) provides the Air Operations Branch with the number, type, location, and specific assignments of helicopters and air resources. The new ICS 220 WF also includes medical extraction capabilities and air resources tracking.

Understanding the capabilities of aviation assets is critical for effective medical and extraction responses. Coordination with the Medical Unit Leader is essential to ensure alignment and consistency between the ICS 220 WF and the Medical Plan (ICS 206 WF). 

References:

Air Operations Summary (ICS 220 WF)

National Interagency Aviation Committee

Incident Command System (ICS) Forms