Skip to main content

CFFDRS System Overview

  1. Introduction
  2. Use of English Units
  3. Wind Observations
  4. Fire Intensity Measures

Introduction

The Canadian Forest Fire Danger Rating System, as shown in these flow charts, is a comprehensive system of tools designed to evaluate environmental factors that influence the ignition, spread, and behavior of wildland fire. Additional detail about the system and its subsystems can be learned from an introductory certificate online course and direct access to the YouTube videos that support it:

CFFDRS Components

The system had its origins from early efforts dating to the 1920s and the development of the Tracer Index, a forerunner of the Fine Fuel Moisture Code (FFMC).

Image
The Fire Weather Index System. This process flow chart outlines the system inputs, as well as the array of output codes and indices

Fire Weather Index (FWI) System Process Flow Chart

The FWI system was developed and introduced across Canada in 1970. Due to its simplicity in terms of data required and outputs produced, it is used both globally and within many regions around the world.

Image
The Fire Weather Index System. This process flow chart outlines the system inputs, as well as the array of output codes and indices.

 

Fire Behavior Prediction (FBP) System Process Flow Chart

The FBP system tools were released in interim form in 1984, with a more formal introduction in 1992, and revisions in 2008.

Image
The Fire Behavior Prediction System. This process flow chart outlines the system inputs, as well as the array of primary fire behavior and secondary fire growth characteristics.

Additional systems for fuel moisture (e.g. hourly FFMC and Grass Fuel Moisture) and ignition have followed.

There are several important distinctions for NFDRS and NFBPS users.

Return to Top

Use of English Units

All the CFFDRS tools and references produced by the Canadian and Provincial governments, as well as applications produced internationally, use the metric system for all measured values. For the most part, measures referenced here are in English units to facilitate utility and use in the United States.

Return to Top

Wind Observations

This table provides a quick reference to aid conversion between 10m, 20ft, unsheltered Eye Level (EL Op) observations, and Forecast/Airport winds. 

Image
Open Windspeed Chart: Use only 10m for effective windspeed

CFFDRS weather observations, provided to the system for both FWI and FBP calculations, generally conform to familiar fire weather standards. These standards can be reviewed in the weather guide table referenced above. However, wind observation standards conform to the international 10m height as opposed to the NFDRS 20-foot height standard.

Image
This depiction highlights the difference in height standard among fixed and handheld wind sensors used in fire management applications.

(Andrews, 2012)

CFFDRS models and tools do not expressly apply relationships between the standard 10m wind measurements and others that U.S. users may be familiar with. Both 20-foot and eye level winds are commonly referenced and reported from U.S. RAWS observing locations and from the fireline.

Further, wind speeds reported from Airport ASOS (Automated Surface Observing System) and provided in National Weather Service forecasts generally report higher wind speed, where surrounding terrain is flat with little variation in vegetation height or structural interference, and is highly correlated with forecast wind speed provided in the National Digital Forecast Database (Lawson and Armitage, 2008).

Image
Surrounding terrain and surface characteristics affect the windspeed measured by sensors.  Compares the speeds measured at generally flat/smooth surfaces around airport sensors, more variable and rougher terrain found in forest RAWS settings, and the highly modified results obtained in urban settings.

(Lawson & Armitage, 2008)

Return to Top

Fire Intensity Measures

A major adaptation in U.S. tools and references, with uncertain validity, is the use of flame length for fire intensity outputs in the Fire Behavior Tables. FBP outputs (kW/m) were converted to BTU/ft/sec using standard conversions and then to flame length using the formula:

Flame Length = .45*"BTU/Ft/Sec"^.46

This table identifies the CFFBP Fire Intensity thresholds in kW/m and the corresponding values in English units (BTU/ft/sec) and flame length in feet. These thresholds are consistent with commonly held flame length thresholds for fire safety interpretations in the U.S. system.

Image
The Fire Intensity Class Conversion Table shows the relationship among English and metric representations of fireline intensity at key threshold levels.

Return to Top

NWCG Latest Announcements

2024 Wildland Fire Emergency Medical Service Awards

Date: May 22, 2025
Questions?  Please contact:
Emergency Medical Committee

The NWCG Emergency Medical Committee (EMC) is proud to announce the recipients of the 2024 Wildland Fire Emergency Medical Service Awards. Each year, EMC recognizes individuals and groups who have demonstrated exceptional actions or accomplishments that go above and beyond their normal mission or job duties.

Congratulations to all the awardees and nominees. Through leadership and initiative, they have made significant contributions to the safety and well-being of the wildland fire community. These honors are well deserved.

References:

2024 Wildland Fire EMS Awards

NWCG Emergency Medical Committee

NWCG Welcomes the Incident Management Teams Association as an Associate Member

Date: May 21, 2025
Questions?  Please contact:
https://www.nwcg.gov/contact-us

The NWCG Executive Board is honored to announce that the Incident Management Teams Association (IMTA) has joined the National Wildfire Coordinating Group as an associate member.

IMTA is a dedicated group of incident management professionals committed to enhancing the profession by promoting standards and fostering collaboration across federal, state, local, Tribal, and private sector partners throughout all phases of incident management.

“Joining NWCG aligns with our mission to elevate incident management professionals nationwide,” said Dr. Randal Collins, President of IMTA. “This is a proud moment for all of us committed to advancing public safety.”

References:

Incident Management Teams Association

National Wildfire Coordinating Group

Updated NWCG Guide for Wildland Fire Modules, PMS 431

Date: May 14, 2025
Questions?  Please contact:
Fire Use Subcommittee

The updated NWCG Guide for Wildland Fire Modules, PMS 431 serves as a supplemental resource for wildland fire module operations, providing information frequently used in the field.

PMS 431 defines the organizational structure, staffing, and qualifications for Type 1 and Type 2 Wildland Fire Modules, outlining their roles in wildland fire suppression, prescribed fire, and resource management. The NWCG Guide for Wildland Fire Modules, PMS 431, should be used in conjunction with the NWCG Standards for Wildland Fire Module Operations, PMS 430.

References:

NWCG Guide for Wildland Fire Modules, PMS 431

NWCG Standards for Wildland Fire Module Operations, PMS 430

Updated NWCG Standards for Wildland Fire Resource Typing, PMS 200 Now Includes Off-Highway Vehicle Typing Standards

Date: May 13, 2025
Questions?  Please contact:
Mobile Fire Equipment Subcommittee 

The NWCG Standards for Wildland Fire Resource Typing, PMS 200 has been updated to include newly developed Off-Highway Vehicle (OHV) typing standards. These standards organize OHV information into logical categories and outline key safety requirements for occupants.

NWCG Standards for Wildland Fire Resource Typing, PMS 200 establishes minimum typing standards for aircraft, crews, and equipment used in national mobilization to wildland fire incidents. Typing designations are assigned based on measurable capability and performance criteria.

References:

NWCG Standards for Wildland Fire Resource Typing, PMS 200