Skip to main content

Active Crown Fire Behavior

  1. Definitions
  2. Active Crown Fire Rate of Spread and Flame Length
  3. Estimating Active Crown Fire Spread Rate With Surface Shrub Models

Definitions

Crown Fraction Burned (CFB) is a theoretical concept that is used to model and classify crown fire. It may be observable after the fact in burn severity assessments.

Image
This graph compares Crown Fire spread rates utilizing several surface shrub fuel models and compares them to the Rothermel Crown Fire Spread Model.

Passive Crown Fire (Intermittent or Persistent Torching) occurs where surface fire intensity is sufficient to ignite tree crowns, individually or in groups, but winds are not sufficient to support propagation from tree to tree. CFB between 0.10 and 0.90.

Active Crown Fire occurs where surface and crown fire energy are linked. Surface intensity is sufficient to ignite tree crowns, and fire spread and intensity in the tree crowns encourages surface fire spread and intensity. CFB at least 0.90.

Independent Crown Fire occurs (rarely) where tree crown loading and flammability is sufficient to carry fire without surface fire contribution under ambient weather and wind conditions. CFB generally approaching 1.0.

Isolated Tree Torching should not be considered crown fire, though it may be an indicator of potential later in the burn period. It usually occurs due to anomalies in surface fire behavior due to jackpots of surface fuel, isolated terrain features, or brief wind gusts. CFB is less than 0.10.

Return to Top

Active Crown Fire Rate of Spread and Flame Length

After the 1988 fire season, Rothermel (1991) developed an empirical model for estimating crown fire spread rates and fireline intensities, referencing several fires from the Rocky Mountains in its development. Based on fire behavior in Fuel Model 10 (FB10), the calculation is essentially:

ROSActiveCrownFire = 3.34*ROSFuelModel10

(Assuming MFWS = 20ft windspeed*0.4)

These graphs, using season, slope, and 20ft windspeed, provide rough estimates of active crown fire spread rates using the Rothermel Crown Fire Spread model.

No Slope

Image
Using the season of the year and the 20-ft windspeed, this graph helps the analyst estimate crown fire spread rate for fires on generally level or low slope landscapes.

50% Slope

Image
Using the season of the year and the 20-ft windspeed, this graph helps the analyst estimate crown fire spread rate for fires on steep slopes of approximately 50%.

100% Slope

Image
Using the season of the year and the 20-ft windspeed, this graph helps the analyst estimate crown fire spread rate for fires on steep slopes of approximately 100%.

Return to Top

Estimating Active Crown Fire Spread Rate with Surface Shrub Models

In fireline assessments, it may be necessary to make quick estimates of crown fire spread based on simple inputs.  Simple lookup tables or graphs like those above provide rough estimates. Anderson (1982), when describing the original 13 surface fuel models, identified several shrub models as representative of crown fire behavior in several classic types:

  • FM4 (Chaparral) for New Jersey Pine Barrens and Lake States Jack Pine.
  • FM6 (Dormant Brush) for Alaska Spruce Taiga.
  • FM7 (Southern Rough) for Alaska Black Spruce/Shrub Communities.

Bishop (2010), in developing the Fireline Assessment Method (FLAME), averaged spread rates for fuel models 5, 6, and 7 to estimate crown fire spread.

Fuel Models sh5 (145) and sh7 (147) have been used in the same manner in spatial modeling in different situations.

This graphic demonstrates the similarity in spread rates produced by the Rothermel Crown Fire Spread Rate (crown) and several surface shrub fuel models.  

Image
This graph compares Crown Fire spread rates utilizing several surface shrub fuel models and compares them to the Rothermel Crown Fire Spread Model.

Caution: Using surface fuel models to represent crown fire behavior may not accurately provide for the calculation of Crown Fraction Burned (CFB) or the modeling of increasing spread due to passive crown fire (torching and spotting) behavior in spatial fire analyses. It may also over-estimate fire spread and intensity under moderated environmental conditions.

NWCG Latest Announcements

NWCG Equipment Technology Committee Releases Safety Warning: 25-001 Non-specification fire shelters

Date: January 15, 2025
Contact: Equipment Technology Committee

The Equipment Technology Committee (ETC) has released Safety Warning: 25-001 Non-specification fire shelters. Non-specification fire shelters claiming to meet Forest Service (FS) fire shelter specification 5100-606 were first found in February of 2023. As of September 2024, non-specification shelters are again being advertised and sold on the open market.

This Safety Warning outlines details and recommended procedures to purchase FS specification shelters made with materials and components that meet performance criteria and toxicity testing requirements outlined in FS Specification 5100-606. 

For additional information on identifying non-specification shelters, please view ETC Safety Warning 23-01.

References:

ETC Safety Warning 25-001: Non-specification fire shelters

NWCG Equipment Technology Committee

ETC Safety Warning 23-01

Paul Gleason Lead by Example Awards

Date: January 14, 2025
Contact: Leadership Committee

The NWCG Leadership Committee has awarded the 2023 Paul Gleason “Lead By Example” awards to individuals in the categories of Initiative and Innovation, Mentoring and Teamwork, and Motivation and Vision, as well as a Lifetime Achievement Award.

Congratulations to the awardees:

  • Sam Bowen, Superintendent of the Mark Twain Veteran Crew with the U.S. Forest Service.
  • Greg Titus, Zone Fire Management Officer for the St. Marks National Wildlife Refuge with U.S. Fish and Wildlife Service.
  • Renae Crippen, Manager of the Blue Mountain Interagency Dispatch Center with the U.S. Forest Service.
  • Eric Carlson, Instructor with OMNA International.

References:

Paul Gleason Lead by Example Award

Wildland Fire Leadership Development Program

Interview with Paul Gleason

Updated NWCG Standards for Water Scooping Operations, PMS 518

Date: December 19, 2024
Contact: Water Scooper Operations Unit

The NWCG Standards for Water Scooping Operations, PMS 518 establishes the standards for dispatching, utilizing, and coordinating water scooping aircraft on interagency wildland fires. These standards should be used in conjunction with the NWCG Standards for Aerial Supervision (SAS), PMS 505, and any local, state, or geographic/regional water scooping plans.

References:

NWCG Standards for Water Scooping Operations, PMS 518

Updated NWCG Standards for Aerial Supervision, PMS 505

Date: December 19, 2024
Contact: Interagency Aerial Supervision Subcommittee

The Interagency Aerial Supervision Subcommittee has updated the NWCG Standards for Aerial Supervision, PMS 505. PMS 505 establishes standards for aerial supervision operations for national interagency wildland fire operations. 

References:

NWCG Standards for Aerial Supervision, PMS 505