Skip to main content

Surface Fire Behavior Lookup Tables

  1. Grass Fuel Models
  2. Grass/Shrub Fuel Models
  3. Brush, or Shrub, Fuel Models
  4. Timber Litter Fuel Models
  5. Timber Understory Fuel Models
  6. Slash/Blowdown Fuel Models

Grass Fuel Models

Fuel Model 1 (Short Grass – 1 ft)

Fire spread is governed by the fine, very porous, and continuous herbaceous fuels that have cured or are nearly cured. Fires are surface fires that move rapidly through the cured grass and associated material. Very little shrub or timber is present, generally less than 1/3 of the area. Grasslands and savanna are represented along with stubble, grass-tundra, and grass-shrub combinations that met the above area constraint. Annual and perennial grasses are included in this fuel model.

Image
Fuel Model 1, Short Grass spread and flame length lookup tables.

Fuel Model 3 (Tall Grass – 2.5 ft)

Fires in this fuel are the most intense of the grass group and display high rates of spread under the influence of wind. Wind may drive fire into the upper heights of the grass and across standing water. Stands are tall, averaging about 3 feet (1 m), but considerable variation may occur. Approximately 1/3 or more of the stand is considered dead or cured and maintains the fire. Wild or cultivated grains that have not been harvested can be considered similar to tall prairie and marshland grasses.

Image
Fuel Model 3, Tall Grass spread and flame length lookup tables.

Return to Top

Grass/Shrub Fuel Models

Fuel Model 2 (Timber – Grass and Understory)

Fire spread is primarily through the fine herbaceous fuels, either curing or dead. These are surface fires where the herbaceous material, as well as litter and dead/down stemwood from the open shrub or timber overstory, contribute to the fire intensity. Open shrub lands and pine stands or scrub oak stands that cover one-third to two-thirds of the area may generally fit this model. Such stands may include clumps of fuels that generate higher intensities and that may produce firebrands. Some pinyon-juniper included here.

Image
Fuel Model 2, Timber – Grass and Understory spread and flame length lookup tables.

Return to Top

Brush, or Shrub, Fuel Models

Fuel Model 4 (Chaparral – 6 ft)

Intense and fast-spreading fires involve the foliage, and live and dead fine, woody material in the crowns of a nearly continuous secondary overstory. Stands of mature shrubs, 6 or more feet tall, such as California mixed chaparral, the high pocosin along the east coast, the pine barrens of New Jersey, or the closed jack pine stands of the north-central States are typical candidates. Besides flammable foliage, dead woody material in the stands significantly contributes to the fire intensity. The height of stands qualifying for this model depends on local conditions. A deep litter layer may also hamper suppression efforts.

Image
Fuel Model 4, Chaparral spread and flame length lookup tables.

Fuel Model 5 (Brush – 2 ft)

Fire is generally carried in the surface fuels that are made up of litter cast by the shrubs and grasses, or forbs in the understory. The fires are generally not very intense because surface fuel loads are light, the shrubs are young with little dead material, and the foliage contains little volatile material. Usually shrubs are short and almost totally cover the area. Young, green stands with no dead wood would qualify: laurel, vine maple, alder, or even chaparral, manzanita, or chamise.

Image
Fuel Model 5, Brush spread and flame length lookup tables.

Fuel Model 6 (Dormant Brush, Hardwood Slash)

Fires carry through the shrub layer where the foliage is more flammable than fuel model 5, but this requires moderate winds, greater than 8 mi/h (13 km/h) at midflame height. Fire will drop to the ground at low wind speeds or at openings in the stand. The shrubs are older. A broad range of shrub conditions is covered by this model. Fuel situations to be considered include intermediate stands of chamise, chaparral, oak brush, low pocosin, Alaskan spruce taiga, and shrub tundra. Even hardwood slash that has cured can be considered. Pinyon-juniper shrublands may be represented but may over-predict rate of spread except at high winds.

Image
Fuel Model 6, Dormant Brush, Hardwood Slash spread and flame length lookup tables.

Fuel Model 7 (Southern Rough)

Fires burn through the surface and shrub strata with equal ease and can occur at higher dead fuel moisture contents because of the flammability of live foliage and other live material. Stands of shrubs are generally between 2 and 6 feet (0.6 and 1.8 m) high. Palmetto-Gallberry understory-pine overstory sites are typical and low pocosins may be represented. Black spruce-shrub combinations in Alaska may also be represented.

Image
Fuel Model 7, Southern Rough spread and flame length lookup tables.

Return to Top

Timber Litter Fuel Models

Fuel Model 8 (Closed Timber Litter)

Slow-burning ground fires with low flame lengths are generally the case, although the fire may encounter an occasional “jackpot” or heavy fuel concentration that can flare up. Only under severe weather conditions involving high temperatures, low humidities, and high winds do the fuels pose fire hazards. Closed canopy stands of short-needle conifers or hardwoods that have leafed out support fire in the compact litter layer. This layer is mainly needles, leaves, and occasionally twigs because little undergrowth is present in the stand. Representative conifer types are white pine, and lodgepole pine, spruce, fir, and larch.

Image
Fuel Model 8, Closed Timber Litter spread and flame length lookup tables.

Fuel Model 9 (Hardwood Litter)

Fires run through the surface litter faster than model 8 and have longer flame height. Both long-needle conifer stands and hardwood stands, especially the oak-hickory types, are typical. Fall fires in hardwoods are predictable, but high winds will cause higher rates of spread than predicted because of spotting caused by rolling and blowing leaves. Closed stands of long-needled pine like ponderosa, Jeffrey, and red pines, or southern pine plantations are grouped in this model. Concentrations of dead-down woody material will contribute to possible torching of trees, spotting, and crowning.

Image
Fuel Model 9, Hardwood Litter spread and flame length lookup tables.

Return to Top

Timber Understory Fuel Models

Fuel Model 10 (Timber – Litter and Understory)

The fires burn in the surface and ground fuels with greater fire intensity than the other timber litter models. Dead-down fuels include greater quantities of 3-inch (7.6-cm) or larger Iimbwood resulting from overmaturity or natural events that create a large load of dead material on the forest floor. Crowning out, spotting, and torching of individual trees are more frequent in this fuel situation, leading to potential fire control difficulties. Any forest type may be considered if heavy down material is present; examples are insect- or disease-ridden stands, windthrown stands, overmature situations with deadfall, and aged light thinning or partial-cut slash.

Image
Fuel Model 10, Timber – Litter and Understory spread and flame length lookup tables.

Return to Top

Slash/Blowdown Fuel Models

Fuel Model 11 (Light Logging Slash)

Fires are fairly active in the slash and herbaceous material intermixed with the slash. The spacing of the rather light fuel load, shading from overstory, or the aging of the fine fuels can contribute to limiting the fire potential. Light partial cuts or thinning operations in mixed conifer stands, hardwood stands, and southern pine harvests are considered. Clearcut operations generally produce more slash than represented here. The less-than-3-inch (7.6 cm) material load is less than 12 tons per acre (5.4 t/ha). The greater-than-3-inch (7.6-cm) is represented by not more than 10 pieces, 4 inches (10.2 cm) in diameter, along a 50-foot (15 m) transect.

Image
Fuel Model 11, Light Logging Slash spread and flame length lookup tables.

Fuel Model 12 (Medium Logging Slash)

Rapidly spreading fires with high intensities capable of generating firebrands can occur. When fire starts, it is generally sustained until a fuel break or change in fuels is encountered. The visual impression is dominated by slash and much of it is less than 3 inches (7.6 cm) in diameter. The fuels total less than 35 tons per acre (15.6 t/ha) and seem well distributed. Heavily thinned conifer stands, clearcuts, and medium or heavy partial cuts are represented. The material larger than 3 inches (7.6 cm) is represented by encountering 11 pieces, 6 inches (15.2 cm) in diameter, along a 50-foot (15 m) transect.

Image
Fuel Model 12, Medium Logging Slash spread and flame length lookup tables.

Fuel Model 13 (Heavy Logging Slash)

Fire is generally carried across the area by a continuous layer of slash. Large quantities of heavy fuels are present. Fires spread quickly through the fine fuels and intensity builds up more slowly as the large fuels start burning. Active flaming supports a wide variety of firebrands, contributing to spotting problems. The total load may exceed 200 tons per acre (89.2 t/ha), but fine fuels are generally only 10 percent of the total load. Situations where the slash still has “red” needles attached but the total load is lighter can be represented because of the earlier high intensity and quicker area involvement.

Image
Fuel Model 13, Heavy Logging Slash spread and flame length lookup tables.

NWCG Latest Announcements

NWCG Equipment Technology Committee Releases New Equipment Bulletins

Date: September 27, 2024
Contact: Equipment Technology Committee

The Equipment Technology Committee (ETC) has released three new Equipment Bulletins:

  • ETC-EB-24-003 Diesel exhaust fluid (DEF) in fuel containers.
  • ETC-EB-24-004 Two-compartment fuel and oil container (Dolmar) unavailable in the United States (US) and reminders for upkeeping current inventories.
  • ETC-EB-24-005 Personal Protective Equipment (PPE): Inspection, Care, and Maintenance.

These bulletins remind field going personnel of important issues related to equipment for wildland firefighting efforts.

References:

NWCG Alerts

ETC-EB-24-003 Diesel exhaust fluid (DEF) in fuel containers

ETC-EB-24-004 Two-compartment fuel and oil container (Dolmar) unavailable in the United States (US) and reminders for upkeeping current inventories

ETC-EB-24-005 Personal Protective Equipment (PPE): Inspection, Care, and Maintenance

The Experiential Learning Subcommittee is looking for your feedback on Staff Rides

Date: September 20, 2024
Contact: Ashleigh D'Antonio and George Risko, Leadership Committee

The Experiential Learning Subcommittee needs to hear from the field about where the greatest need lies regarding staff rides and their accessibility.

  • Do you have an event you would like to turn into a learning experience?
  • Do you have a staff ride built, but are struggling to implement the delivery?
  • Do you need help building capacity?
  • What other ideas do you have to support experiential leadership training?

Fill out this short survey below to help us help you.

References:

Staff Rides: Feedback

Staff Rides

Updated NWCG Single Resource Casual Hire Information, PMS 934

Date: September 19, 2024
Contact: Incident Business Committee

The Incident Business Committee has updated the NWCG Single Resource Casual Hire Information, PMS 934. This update expands the provisions for hiring emergency personnel.

References:

NWCG Single Resource Casual Hire Information, PMS 934

IBC Memorandum 24-03

NWCG 2024 Spring/Summer Highlights

Date: September 13, 2024

Image
Forest Service Logo
Image
Bureau of Indian Affairs Logo
Image
Bureau of Land Management Logo
Image
National Park Service Logo
Image
Fish & Wildlife Service Logo
Image
State Foresters Logo
Image
U.S. Fire Administration
Image
Intertribal Timber Council Logo
Image
International Association of Fire Chiefs
Image
Department of Defense Logo

Welcome to our latest highlights from the National Wildfire Coordinating Group, where we explore the latest updates, insights, and efforts that develop interoperable wildland fire operations among federal, state, local, Tribal, and territorial partners.

The Performance Support Package, which for ABRO includes the Incident Position Standards and Next Generation Position Task Book were developed through the Incident Performance and Training Modernization (IPTM) effort. The Performance Support Package will support trainees, those qualified in the position, and evaluators.
 


Image
NASA Logo

NASA JOINS NWCG!

The National Aeronautics and Space Administration (NASA) is officially an associate member of NWCG. As such, NASA is beginning to collaborate with wildland fire management agencies with the goal of increasing collaboration across agencies and leveraging NASA data, technology, and innovation for nation-wide efforts in wildland fire management. NASA has a rich history of research, development, and technology transfer in the areas of Earth science, space technologies, and aeronautics that support the NWCG mission.


Image
NWCG new website look.

WWW.NWCG.GOV HAS A NEW LOOK AND DESIGN

The NWCG web team dedicated the past two years to making a significant upgrade to the www.nwcg.gov site. This upgrade involved a comprehensive redesign of over 7,700 web pages.

The modernization of NWCG’s website involved migrating to Drupal 10, a cutting—edge content management system, and leveraging Amazon Web Service GovCloud for secure and efficient hosting. These upgrades help ensure that the NWCG website remains current in content management practices, offering enhanced customization, improved performance, and an overall superior user experience.


NWCG Leadership Committee

Image
WFLDP Professional Reading Program logo
Image
WFLDP PRP book covers

The Wildland Fire Leadership Development Program announced the Professional Reading Program’s 2024 list!

The years books include:

  • Young Men and Fire by Norman Maclean
  • The Wisdom of the Bullfrog by William H. McRaven
  • The Art of Clear Thinking by Hasard Lee
  • Emotional Agility by Susan David
  • Writing to Persuade by Trish Hall

Learn more at the NWCG Leadership Committee


INCIDENT PERFORMANCE AND TRAINING MODERNIZATION

In 2023, NWCG kicked off the Incident Performance and Training Modernization (IPTM) effort. A training system overhaul focused on developing a performance-based training system designed to shift training to on-the-job when appropriate.

Over the next five years, NWCG intends to analyze all positions within the NWCG Standards for Wildland Fire Position Qualifications, PMS 310-1. To date we are currently working on 30 incident positions, and planning for 20+ in calendar year 2025.

Subject Matter Experts from a variety of geographical areas and agencies recently completed the position analysis for 16 positions. From this analysis, Incident Positions Standards and a Next Generation Position Task Book will be developed for each position.

Image
Incident Performance and Training Modernization

NEXT GENERATION POSITION TASK BOOK

In April 2024, NWCG launched the new Next Generation Position Task Book (Next Gen PTB) which is a key component of the IPTM effort. This revised evaluation tool is designed to work in conjunction with the newly developed Incident Position Standards.

Major Next Gen PTB changes:

  • Structured to improve constructive conversations between evaluators and trainees.
  • Reference new Incident Position Standards.
  • Include only tasks required to be evaluated for successful performance.
  • Trainees will be rated on their performance vs. initialing whether a task was completed.
  • Must include written feedback when trainee does not meet the standard.
  • Will be position specific (no combined PTBs).
Image
Screen shot of the Next Gen Position Task Book

Image
Banner image of the Wildland Fire Learning Portal website

NWCG’s training course catalog is now available on the Wildland Fire Learning Portal (WFLP).

To access the training course catalog, visit WFLP and either set up an account or login as a guest.