Skip to main content

4.7 Graphs

Graphing is a method of showing the relationship between two or more sets of data by means of a chart or sketch. Trends in data are easier to identify with a graph than a data table.

A graph can be created using graphing paper (you purchase gridded paper or draw your own), a computer application such as Excel, or graphing applications for a personal digital assistant (PDA) or phone. A graph shows a set of data points plotted in relation to the horizontal axis and vertical axis. 

Example 1 - Draw a graph for pump performance showing the relationship between pressure (psi) and flow (gpm). Use the following table of pump performance data values. 

pump performance values 

Step 1. Pump performance charts are typically drawn with the flow on the horizontal axis and pressure on the vertical axis. Label the horizontal axis as flow in gallons per minute. Label the vertical axis as pressure in pounds per square inch.

flow rate gpm
Step 2. Mark the horizontal axis from 0 to 90 in even increments. Mark the vertical axis from 0 to 300 in even increments of 25 pounds per square inch, as the data points were collected in increments of 25 pounds per square inch.

Step 3. Plot each data set by finding the pressure value on the vertical axis and then the flow value on the horizontal axis. Mark (plot) a point where the two values meet. Continue plotting points for all data sets.

Step 4. Run a curved line through the points. Not all the points will be on the curve, some of the points will lie above the line and some below. Special statistical calculations are used to determine how far off the curve a data point can be and still be meaningful. Typically, if the point is off the curve enough to affect the shape of the curve, the data set should be rerun.

pump performance curve
 

USING A GRAPH TO FIND APPROXIMATE VALUES

A curve can be used to find approximate values for data in between the data sets collected. The curve can also be used to show performance trends. For example, this curve shows that as pressure is decreasing, the flow rate increases proportionally throughout the range of performance. 

Example 2 - Using the graph above, find the indicated flow rate at a pressure of 263 pounds per square inch (psi).

Step 1. Approximate the location of 263 pounds per square inch on the pressure axis. This location is approximately halfway between 275 and 250 pounds per square inch.

Step 2. Move horizontally until the curved line is met.

Step 3. Move vertically from the curved line to the flow rate axis. Read or approximate the flow rate.
 

The flow rate at 263 psi is 35 gallons per minute.
 

DETERMINING THE SLOPE OF A CURVE

The slope of a line can be determined from a plot using the slope formula.

slope = rise/run

Example 3 - Find the slope of the line drawn on the plot above for the interval between 50 and 150 pounds per square inch.
It's important to be aware what interval is being used, because the line drawn is a curve and the slope will change with each section of line.

Note from the curve that as the pressure varies from 50 to 150 pounds per square inch, the the flow rate varies from about 79 to 63 gallons per minute.

Pressure, pounds per square inch, is on the vertical axis, so it is the rise. Flow rate, gallons per minute, is on the horizontal axis, so it is the run.

Slope = rise / run = ((150 - 50) psi / 63 - 79) gpm = 100 psi / (-16 gpm) = -6 psi/gpm

The slope is -6 psi/gpm. The negative slope indicates that as the horizontal value (flow rate) increases, the vertical value (pressure) pressure decreases.
 

READING DISTANCE FROM A MAP CHART

Maps are generally broken into grids and labeled on the vertical and horizontal axes for ease of locating places or numbers. If the vertical and horizontal values are known, the area on the map can be obtained by finding where the two lines intersect or cross. Charts accompanying the map provide information about the distance between different map locations. By reading the appropriate values from those horizontal and vertical axes.

Example 4 - Use the mileage chart below to find the distance between Tampa, FL, and Albuquerque, NM.

mileage chart

Step 1. Locate Tampa on the horizontal axis. Draw a vertical line through these grids.

Step 2. Locate Albuquerque on the horizontal axis. Draw a horizontal line across these grids.

Step 3. Read the mileage amount where the two lines cross

mileage chart

The distance between Tampa and Albuquerque is 1,760 miles.

NWCG Latest Announcements

Updated NWCG Guide for Wildland Fire Modules, PMS 431

Date: May 14, 2025
Questions?  Please contact:
Fire Use Subcommittee

The updated NWCG Guide for Wildland Fire Modules, PMS 431 serves as a supplemental resource for wildland fire module operations, providing information frequently used in the field.

PMS 431 defines the organizational structure, staffing, and qualifications for Type 1 and Type 2 Wildland Fire Modules, outlining their roles in wildland fire suppression, prescribed fire, and resource management. The NWCG Guide for Wildland Fire Modules, PMS 431, should be used in conjunction with the NWCG Standards for Wildland Fire Module Operations, PMS 430.

References:

NWCG Guide for Wildland Fire Modules, PMS 431

NWCG Standards for Wildland Fire Module Operations, PMS 430

Updated NWCG Standards for Wildland Fire Resource Typing, PMS 200 Now Includes Off-Highway Vehicle Typing Standards

Date: May 13, 2025
Questions?  Please contact:
Mobile Fire Equipment Subcommittee 

The NWCG Standards for Wildland Fire Resource Typing, PMS 200 has been updated to include newly developed Off-Highway Vehicle (OHV) typing standards. These standards organize OHV information into logical categories and outline key safety requirements for occupants.

NWCG Standards for Wildland Fire Resource Typing, PMS 200 establishes minimum typing standards for aircraft, crews, and equipment used in national mobilization to wildland fire incidents. Typing designations are assigned based on measurable capability and performance criteria.

References:

NWCG Standards for Wildland Fire Resource Typing, PMS 200

NEW! S-204, Interpersonal and Critical Thinking Skills for Safety Officers Now Available

Date: May 12, 2025
Questions?  Please contact:
Risk Management Committee

The S-204, Interpersonal and Critical Thinking Skills for Safety Officers self-directed online course is now available! Developed through the Incident Performance and Training Modernization (IPTM) effort, this training supports individuals working towards Safety Officer, Field (SOFF) incident qualifications.

S-204, Interpersonal and Critical Thinking Skills for Safety Officers focuses on facilitating hazard mitigation conversations and building trust to influence safety-related decisions. Individuals can self-enroll through the Wildland Fire Learning Portal (WFLP).

Any changes to qualification pathways will take effect with the next update of the NWCG Standards for Wildland Fire Position Qualifications, PMS 310-1.

References:

S-204, Interpersonal and Critical Thinking Skills for Safety Officers 

NWCG Safety Officer, Field (SOFF) Position Page

Wildland Fire Learning Portal

Great Basin Cache Upgrading to New Inventory System

Date: May 7, 2025
Questions?  Please contact:
Great Basin Cache
Phone: (208) 387-5104
Fax: (208) 387-5573

The Great Basin Cache (GBK) is transitioning to a new inventory system to better serve the wildland fire community. During this upgrade, GBK will be unable to process standard orders from Part 1: Fire Supplies and Equipment and Part 2: Publications between May 8-20, 2025, with exceptions made for emergency fire orders. Orders will be accepted through close of business May 7.

To browse the latest available items, please refer to the National Fire Equipment System (NFES) catalogs. 

References:

NWCG NFES Catalog-Part 1: Fire Supplies and Equipment, PMS 449-1

NWCG NFES Catalog-Part 2: Publications, PMS 449-2